
State of Video Understanding Models as Robot Task Verifiers

Alper Canberk

Abstract— In this report, we discuss methods for building a
robot system that learns low-level robot manipulation primitives
from ego-centric videos. To evaluate the feasibility of this
approach, we conduct a thorough analysis of the pre-trained
action classifier VideoMAE, trained to classify actions on the
egocentric Something-Something-V2 dataset. Finally, we discuss
our plans on how to move forward with this project.

I. INTRODUCTION

The development of robust low-level manipulation prim-
itives for robots has become increasingly important with
the adoption of large language models (LLMs) as high-
level planners for robotic systems. Now that LLMs enable
robots to common-sensically decompose long-horizon tasks
into smaller, executable actions, the effectiveness of such
language-guided systems is limited by the flexibility and suc-
cess rate of the available manipulation primitives. Previous
approaches for acquiring manipulation skills, such as hand-
engineering or behavior cloning, rely on human input in the
training process and may not scale up sufficiently for open-
world applications. In order to overcome these limitations,
there is a need for methods that allow robots to learn manipu-
lation skills from abundant internet-scale data sources, such
as human videos. However, previous approaches that have
attempted to learn from human videos have been constrained
to limited objects and limited environments [1] [3].

In this report, we propose a novel approach: a robot can
first learn arbitrary 3D manipulation actions in a semanti-
cally abstracted, sim2real generalizable way, and then bring
context and semantics into these actions using LLMs and
VLMs only in the downstream tasks (e.g. the robot can first
learn how to "put [something] in [something]", for arbitrary
objects, later we can specify what objects should go in these
blanks).

As a first step, we evaluate the feasibility of this ap-
proach through a thorough analysis of the state-of-the-art
action classifier, VideoMAE [2], which was trained on the
Something-Something-V2 dataset [4]. Using insights from
these analyses, we then discuss how we can move forward
in order to enable robots to learn manipulation primitives
from ego-centric human video data.

II. PROBLEM DEFINITION

In recent years, there has been growing interest in using
video understanding models to enable robots to learn ma-
nipulation skills from visual data. However, little research
has been conducted on how these models perform in the
context of robotic manipulation tasks depending on various
environmental factors. In this paper, we aim to address
this gap in knowledge by examining the effects of camera

Fig. 1. Batch Evaluation Pipeline.

angle, input video segment, object being manipulated, and
background on the ability of video understanding models to
accurately classify actions. Additionally, we explore how to
best utilize the output of the action classifier in the context
of robotic manipulation. Through this analysis, we hope to
provide insights into how video understanding models can
be effectively applied to enable robots to learn manipulation
skills from visual data.

III. APPROACH

In order to study the performance of the action classifier
on robot data, we hand-coded manipulation primitives for
the actions "Push" and "Grasp" and introduced slight ran-
domization to allow for both successful and unsuccessful
actions. These primitives were then generated in simulation
and recorded in video form. By analyzing the responses
of the action classifier to these videos, we aimed to gain
insights into the effects of various environmental factors on
its performance. The details of the hand-coded manipulation
primitives can be found in the appendix.

A. Simulator

Initially, we utilized the PyBullet physics engine and the
Panda Arm in our simulations. However, we later decided to
switch to the higher-level simulator iGibson and the Fetch
Robot due to the availability of assets and tools. As a
result, the majority of our experiments were conducted using
iGibson. We later discovered that the physical interactions in
iGibson were not entirely accurate, leading us to also conduct
an experiment using the MuJoCo physics engine.

B. Action Classifier

For the video understanding model, we were inspired by
the work of Concept2Robot and chose to use a model trained
on the Something-Something-V2 dataset. To evaluate the



performance of this model, we utilized VideoMAE, the cur-
rent state-of-the-art action classifier trained on Something-
Something-V2. VideoMAE processes 16 frames of 224x224
images as input and returns prediction probabilities for
174 action categories within the Something-Something-V2
dataset.

C. Video Collection Technique

While previous works have used 16 equally spaced frames
from an entire trajectory to feed into the action classifier, we
collected 16 frames using sliding windows of various widths
over the trajectory video. This way, we were able to collect
16 frames from all parts of the video with various amounts of
spacing. In addition, we collected the trajectory videos from
multiple viewpoints for testing the effect of camera angle
on the action classifier. After many 16-frame windows were
collected, they were pre-processed and forwarded through
VideoMAE in batches (Fig. 1.).

IV. RESULTS

A. Metrics

For each action primitive (push and grasp), we hand-
designed both a dense reward metric as well as a success
condition (in Appendix). Then, for a given trajectory and
a given primitive, we observed the correlation of the dense
reward and success condition with respect to the outputs of
the action classifier.

1) Absolute Logit, which corresponds to the raw ac-
tivation of an action primitive in the output layer
of VideoMAE. Given that the outputs from the final
dense layer of VideoMAE are denoted o and the
selected action primitive has index j, the absolute logit
corresponds to the value oj

2) Prediction Probability (Normalized Logit) Let the
specified action primitive be indexed by j. The pre-
diction probability for this specified action primitive
is

pj =
eoj∑
i e

oi

The reason why we measure the prediction probability
separately from the absolute logit is that in robot videos,
since the robot arm is distinct from a human arm, seeing a
robot arm can trigger activations related to action primitives
that signify tool use, which in turn lowers the predicted
probability of the desired action primitive. (e.g. pushing
[something] with [something] as opposed to pushing
[something]). In an effort to obtain predictions that are more
"individual", we also decided to measure the absolute logit.

B. Grasp Banana in iGibson

Viewpoint Abs Logit Normalized Logit
Left 0.48 0.38

Right 0.49 0.29
Top 0.05 0.02

Robot 0.40 0.05
Low 0.87 0.86
Max 0.87 0.86

Correlation Between Task Success and Predicted Metrics

The grasp banana task had a surprising amount of corre-
lation between the success metric and the action classifier
predictions. As seen in Figure 4., the low robot view, which
is roughly orthogonal to the end-effector movement, activates
the output neuron corresponding to "grasp [something]" with
a 0.87 correlation with respect to the task successfully. It’s
also worth noting that the top-down camera view did not
activate much because it couldn’t clearly see the action.
Another important conclusion from this experiment is that
the absolute logit predictions (left column of the table)
generally seem more correlated with the ground truth metric
than the normalized logit.

Fig. 2. iGibson Grasp Banana From Different Views The same robot
trajectory from 5 different angles.

For the grasp banana task, we also tested various windows
and spacings from which to take the 16 frames:

1) 16 frames equally spaced from the beginning to the
end

2) the maximum prediction of the 16 frames that begin
in the first half of the video, and finish near the end
of the episode.

3) the maximum prediction of the 16 frames that finish
near the end of the episode.



Fig. 3. Three different window selection settings.

Viewpoint Setting 1 Setting 2 Setting 3
Prediction Confidence 0.87 0.71 0.73

From the results given in the table above, we can conclude
that naively feeding in the 16 equally spaced frames into
the action classifier gives us the best performance. This is
interesting because the actual grasping action happens in the
second half of the episode, and one would expect a video in
which only the grasping happens to score better. However,
it seems that having some padding before grasping helps
prediction.

Fig. 4. Grasp Banana Prediction Based On Viewpoint

C. Push Object in iGibson

1) Push Banana From Right to Left:

Viewpoint Abs Logit Normalized Logit
Left 0.03 −0.18

Right 0.43 0.05
Top 0.60 0.29

Robot 0.33 0.05
Low 0.71 0.43
Max 0.71 0.43

Correlation Between Task Success and Predicted Metrics

2) Push Box From Right to Left:

Viewpoint Abs Logit Normalized Logit
Left 0.35 0.06

Right 0.64 0.31
Top 0.51 0.49

Robot 0.38 0.23
Low 0.73 0.54
Max 0.73 0.54

Correlation Between Task Success and Predicted Metrics

The correlation results for the push task are quite a bit noisier
than the grasping task. Our suspicion is this is due to the fact
that an object can be pushed to the left by different amounts
and that our hand-defined pushing distance threshold may
not reflect that of the model.

We can see that the correlation numbers for the banana
and the box are slightly different, but this difference seems
to be minimized in the "Low View", which was also the
best view for the grasping task. This shows that picking a
good viewpoint for grading may be important for robustness
against objects of different scales.

D. Grasp Banana in MuJoCo

Viewpoint Abs Logit Normalized Logit
Left −0.11 −0.11

Right 0.73 0.73
Top 0.24 0.24

Robot 0.10 0.10
Low 0.14 0.14
Max 0.73 0.73

Correlation Between Task Success and Predicted Metrics
using Darkwood Background



Viewpoint Abs Logit Normalized Logit
Left 0.14 0.07

Right 0.43 0.49
Top 0.22 0.27

Robot 0.03 −0.10
Low 0.48 0.65
Max 0.48 0.65

Correlation Between Task Success and Predicted Metrics
using Lightwood Background

Viewpoint Abs Logit Normalized Logit
Left −0.00 −0.13

Right 0.59 0.72
Top 0.16 0.25

Robot 0.28 0.19
Low 0.39 0.46
Max 0.49 0.72

Correlation Between Task Success and Predicted Metrics
using White Background

The correlation between the ground truth metrics and the
predicted metrics from MuJoCo is slightly worse than that
of iGibson, regardless of the background. This could be due
to factors such as the robot arm positioning of the camera
(no table), robot shadows, and complex background pattern.
In this regard, the MuJoCo environment needs some more
tuning until we can train a useful policy on it.

In this setting, the significance of picking a good viewpoint
seems to be amplified even further (with the left view having
a much higher correlation than all the other viewpoints).

V. TAKEAWAYS

1) What’s the effect of the camera angle? The camera
angle that we use for the prediction can have a sig-
nificant impact on the performance. In the simulation,
the best way to find this camera is to try all cameras
and take the maximum per trajectory. However, in the
real world, it might be expensive or not feasible to
have that many cameras around the robot. In this case,
a method for finding the best camera angle would be
extremely useful.

2) What’s the effect of feeding in different parts of
the video? As long as the prediction window is at
a reasonable location in the video, the difference is
very insignificant. Therefore, the simplest and the most
general choice is to take the frames from the entire
trajectory.

3) What’s the effect of the object being manipulated?
Although changes in the object can result in slight
differences in prediction correlations, this difference is
reasonable. In addition, the magnitude of the absolute
logit predictions for the banana and the box are dis-
tributed very closely, which makes us optimistic about

this method’s robustness against variation in the objects
that are being manipulated.

4) How can we best use the outputs of the action clas-
sifier? As we suspected from the beginning, isolating
the desired action primitive by using its "absolute logit"
generally gives higher correlations than simply using
the predicted probabilities, which takes into account
all 174 action primitives.

5) What’s the effect of the background? The ex-
periments from MuJoCo demonstrate that having an
appropriate background can lead to nontrivial changes
in the GT vs. Predicted Metric correlations. For this
reason, going forward, it will be important that we
pick the right background for the task. Our initial
hypothesis is that backgrounds that are simpler lead
to better results, but further investigation is needed in
this direction.

VI. NEXT STEPS

A. Tasks

The three tasks I’d like my system to be able to tackle
are push, grasp, and open drawer. Although Concept2Robot
"succeeds" on these tasks, the environments for these tasks
are in a configuration such that the robot can accomplish
them by performing a single linear motion. We would like
my method to go beyond the limited environment constraint.
Although these tasks are basic, each of them has their
nuances

1) Push: Pushing is an extremely primitive task because
it doesn’t require much precision. However, the nuance
of pushing resides in the customizability of the pushing
direction. An object could be pushed right, left, or even
towards some arbitrary object on the table. In addition,
pushing might be tricky to get right with an action classifier
because it’s not clear how much pushing the action classifier
considers the most pushing. Is there a threshold at which if
an object is pushed more than that, the classifier confidence
decreases? What happens if the robots keep pushing object A
towards object B but does not stop near object B but keeps
pushing object B with object A? Questions such as these
may require additional constraints to the problem definition,
which would in turn limit the generality of our framework.
Finding the right balance will most certainly be challenging.

2) Grasp: A successful grasp requires a nice trajectory
toward the object that needs to be grasped, a precise and
secure grasp, and a pull. The most challenging aspect of this
is getting precise grasping, which makes successful grasps
very sparse. Luckily, the action classifier seems to be able
to recognize if an object is picked up correctly by observing
the object with respect to the arm motion after the grasp is
performed. This means that efficient exploration of the action
space is crucial for succeeding in this task.

3) Open Drawer: The monumental task I’d like my
system to be able to tackle is opening a drawer. This is not
only an impressive task, but it also highlights the importance
of visual feedback. Whereas the supervision for the push
and grasp tasks can be described visually or using the center



of mass coordinate of an object, opening the drawer results
in a much more complicated visual result that heuristics
cannot trivially recognize. Unfortunately, opening a drawer
is the most complicated task of all because it merges the
progressive nature of pushing (how much to pull the drawer
handle) with the sparsity of grasping.

B. Training a Policy

All three of the tasks that we would like to accomplish can
be done with actions in the end-effector space. Therefore,
going forward I’d like to adopt the action space of PerAct.
To even further constrain this action space we can simplify it
to predicting two consecutive end-effector actions. Given the
two waypoints, the robot will move to the first waypoint, then
the second one, and back to the first one. This formulation
captures grasping, pushing, and opening drawer.

As for the state space, we would like to use a 3D
representation due to the Sim2Real effectiveness of such
methods. We would like the robot to first learn actions in
simulation using very simplified and segmented 3D visuals
with solid colors while receiving supervision from the action
classifier that observes the real scene from a 2D window.
When applying this system in the real world, we can parse a
real scene into the segmented 3D format that the robot sees
to achieve high Sim2Real generalization.

C. Viewpoint Selection

The analyses that we have run show that camera viewpoint
has a strong impact on the strength of the supervision we get
from a given video. If we would like this project to go in a
direction where it can train autonomously in the real world,
then we might certainly need to position a camera well so
that it can clean supervision. Along this line, we propose the
following ideas

1) Observe the given action from a direction that’s
orthogonal to the direction of the action. The reason
why the lower viewpoint did so well on the iGibson
results we presented in this report is that the lower view
was positioned almost orthogonally to the direction of
the end effector movement. Therefore, it observed the
highest magnitude of movement. This can be used as a
simple yet effective heuristic to guide camera position.

2) Try to maximize the similarity of the initial
frame with the initial frames from the Something-
Something-V2 dataset Assuming that we get the
best supervision from videos with initial frames that
are similar to the initial frames from the Something-
Something-V2 dataset, here’s what we could do to
capture these similarities.

We can first obtain a bunch of non-egocentric
images from the internet that are somewhat similar
in environment to the environments in the Something-
Something-V2 dataset. Then we could try to learn
a representation that pushes the initial images in
Something-Something-V2 closer together and the dif-
ferent pairs further apart.

If different action categories also happen to differ
in terms of the initial frame, we can come up with
a different weight pulling together similar vs different
action primitives.

If the dataset we’re working with provides some
information about the camera viewpoint with respect to
the action being performed in the video, and it happens
that we need our representation to capture information
about the camera viewpoint, then we could also add an
auxiliary loss for reconstructing the camera parameters
from the given representation.

After we train this representation, we can sample a
few different viewpoints before we start any robot ac-
tion, score each viewpoint according to various metrics
(e.g. distance to the nearest point in the latent space
with the given action primitive label), and then pick
the best candidate out of those viewpoints. We could
then proceed onto the training of the action primitive.

REFERENCES

[1] Shao, Lin, Toki Migimatsu, Qiang Zhang, Karen Yang, and Jean-
nette Bohg. "Concept2Robot: Learning Manipulation Concepts from
Instructions and Human Demonstrations." In Proceedings of Robotics:
Science and Systems (RSS), 2020.

[2] Tong, Zhan, et al. "Videomae: Masked autoencoders are data-
efficient learners for self-supervised video pre-training." arXiv preprint
arXiv:2203.12602 (2022).

[3] Chen, Annie S., Suraj Nair, and Chelsea Finn. "Learning generalizable
robotic reward functions from" in-the-wild" human videos." arXiv
preprint arXiv:2103.16817 (2021).

[4] Goyal, Raghav, Samira Ebrahimi Kahou, Vincent Michalski, Joanna
Materzynska, Susanne Westphal, Heuna Kim, Valentin Haenel, Ingo
Fründ, Peter Yianilos, Moritz Mueller-Freitag, Florian Hoppe, Chris-
tian Thurau, Ingo Bax, and Roland Memisevic. "The ’Something
Something’ Video Database for Learning and Evaluating Visual Com-
mon Sense." In IEEE/CVF International Conference on Computer
Vision, 2017.


